Subscribe to our free daily newsletters
. Military Space News .




Subscribe to our free daily newsletters



CYBER WARS
High-dimensional quantum encryption performed in real-world city conditions for first time
by Staff Writers
Washington DC (SPX) Aug 28, 2017


For the first time, researchers have demonstrated sending messages in a secure manner using high dimensional quantum cryptography in realistic city conditions.

For the first time, researchers have sent a quantum-secured message containing more than one bit of information per photon through the air above a city. The demonstration showed that it could one day be practical to use high-capacity, free-space quantum communication to create a highly secure link between ground-based networks and satellites, a requirement for creating a global quantum encryption network.

Quantum encryption uses photons to encode information in the form of quantum bits. In its simplest form, known as 2D encryption, each photon encodes one bit: either a one or a zero. Scientists have shown that a single photon can encode even more information - a concept known as high-dimensional quantum encryption - but until now this has never been demonstrated with free-space optical communication in real-world conditions. With eight bits necessary to encode just one letter, for example, packing more information into each photon would significantly speed up data transmission.

"Our work is the first to send messages in a secure manner using high-dimensional quantum encryption in realistic city conditions, including turbulence," said research team lead, Ebrahim Karimi, University of Ottawa, Canada. "The secure, free-space communication scheme we demonstrated could potentially link Earth with satellites, securely connect places where it is too expensive to install fiber, or be used for encrypted communication with a moving object, such as an airplane."

As detailed in Optica, The Optical Society's journal for high impact research, the researchers demonstrated 4D quantum encryption over a free-space optical network spanning two buildings 0.3 kilometers apart at the University of Ottawa. This high-dimensional encryption scheme is referred to as 4D because each photon encodes two bits of information, which provides the four possibilities of 01, 10, 00 or 11.

In addition to sending more information per photon, high-dimensional quantum encryption can also tolerate more signal-obscuring noise before the transmission becomes unsecure. Noise can arise from turbulent air, failed electronics, detectors that don't work properly and from attempts to intercept the data. "This higher noise threshold means that when 2D quantum encryption fails, you can try to implement 4D because it, in principle, is more secure and more noise resistant," said Karimi.

Using light for encryption
Today, mathematical algorithms are used to encrypt text messages, banking transactions and health information. Intercepting these encrypted messages requires figuring out the exact algorithm used to encrypt a given piece of data, a feat that is difficult now but that is expected to become easier in the next decade or so as computers become more powerful.

Given the expectation that current algorithms may not work as well in the future, more attention is being given to stronger encryption techniques such as quantum key distribution, which uses properties of light particles known as quantum states to encode and send the key needed to decrypt encoded data.

Although wired and free-space quantum encryption has been deployed on some small, local networks, implementing it globally will require sending encrypted messages between ground-based stations and the satellite-based quantum communication networks that would link cities and countries. Horizontal tests through the air can be used to simulate sending signals to satellites, with about three horizontal kilometers being roughly equal to sending the signal through the Earth's atmosphere to a satellite.

Before trying a three-kilometer test, the researchers wanted to see if it was even possible to perform 4D quantum encryption outside. This was thought to be so challenging that some other scientists in the field said that the experiment would not work. One of the primary problems faced during any free-space experiment is dealing with air turbulence, which distorts the optical signal.

Real-world testing
For the tests, the researchers brought their laboratory optical setups to two different rooftops and covered them with wooden boxes to provide some protection from the elements. After much trial and error, they successfully sent messages secured with 4D quantum encryption over their intracity link.

The messages exhibited an error rate of 11 percent, below the 19 percent threshold needed to maintain a secure connection. They also compared 4D encryption with 2D, finding that, after error correction, they could transmit 1.6 times more information per photon with 4D quantum encryption, even with turbulence.

"After bringing equipment that would normally be used in a clean, isolated lab environment to a rooftop that is exposed to the elements and has no vibration isolation, it was very rewarding to see results showing that we could transmit secure data," said Alicia Sit, an undergraduate student in Karimi's lab.

As a next step, the researchers are planning to implement their scheme into a network that includes three links that are about 5.6 kilometers apart and that uses a technology known as adaptive optics to compensate for the turbulence. Eventually, they want to link this network to one that exists now in the city. "Our long-term goal is to implement a quantum communication network with multiple links but using more than four dimensions while trying to get around the turbulence," said Sit.

A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Gunthner, B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, E. Karimi. "High-Dimensional Intra-City Quantum Cryptography with Structured Photons," Optica, Volume 4, Issue 9, 1006-1010 (2017). DOI: 10.1364/optica.4.001006

CYBER WARS
Chinese national charged with US hacking
Washington (AFP) Aug 25, 2017
The FBI has charged a Chinese national with using malicious software widely linked to a devastating hack of government databases that saw the personal information of millions of federal workers and contractors stolen. Yu Pingan, a 36-year-old from Shanghai who uses the alias "GoldSun," was arrested earlier this week after he flew into Los Angeles airport for a conference, according to CNN. ... read more

Related Links
The Optical Society
Cyberwar - Internet Security News - Systems and Policy Issues

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CYBER WARS
US military to install radar in Pacific's Palau

Japan deploys missile defence over N. Korea threat to Guam

Jacobs Technology awarded $4.6B contract for missile defense services

US successfully tests missile intercept system

CYBER WARS
Latvia buying Stinger air-defense missiles from Denmark

US Air Force awards Lockheed Martin Long Range Stand Off Missile contract

Romania approved for U.S. rocket system buy

Air Force successfully launches LRASM missile from B-1B Lancer

CYBER WARS
Lockheed pairs drone with counter-UAS system

Battelle, Dedrone partner for counter-drone system

Go fetch! Drones help Swiss rescue dogs find the missing

Do video game players make the best unmanned pilots

CYBER WARS
Industry team demonstrates Low Cost Terminal for AEHF satellites

82nd Airborne tests in-flight communication system for paratroopers

North Dakota UAS Training Center Depends on IGC Satellite Connectivity

Envistacom wins $10M Army communications contract

CYBER WARS
Air Force continuing development of BATDOK mobile medical device

Japan military holds live fire drills at Mt Fuji

White House to give guidance on Trump transgender military ban

LOC Performance receives $49.1 million Bradley upgrade contract

CYBER WARS
Defence firms eye billion-dollar chance for 'made in India'

China showcases weapon systems to possible foreign buyers

Kratos receives $46.2 million contract for Saudi Arabian defense services

DOD's acquisition, technology and logistics office to get a makeover

CYBER WARS
Sri Lanka's president sacks outspoken justice minister

China slams reported Indian road project on border

NATO chief demands Russian 'transparency' on war games

US Navy collisions a propaganda windfall for China

CYBER WARS
Nanotechnology gives green energy a green color

How to move objects at the nanoscale

New method promises easier nanoscale manufacturing

Nanoparticles could spur better LEDs, invisibility cloaks




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement