. | . |
Could drones deliver packages more efficiently by hopping on the bus by Staff Writers Stanford CA (SPX) Jun 26, 2020
One-click purchases and instant delivery have helped fuel the growth of e-commerce, but this convenience has come at the cost of increased traffic congestion, longer commute times, and strained urban communities. A 2018 report from Texas A and M University found that delivery trucks represent just 7% of U.S. traffic but account for 28% of the nation's congestion. Delivery drones could help take some of the load off the pavement, and aerial delivery systems already operate in some countries. But even the best drones have limited payload capacity and flight range. What if we could combine the last-mile flexibility of drones with the long-haul capacity of ground-based vehicles to make e-commerce more traffic-friendly? In a recent presentation at the IEEE International Conference on Robotics and Automation (ICRA), our Stanford research team unveiled a framework for routing a large fleet of delivery drones over ground transit networks. In our setup, the drones were able to hitch rides on public transit vehicles to save energy and increase flight range. Our algorithm decided which drones should make which deliveries, one package at a time, in what order - and when to fly versus hitching a ride. In our experiments, we ran simulations over two real-world public bus networks and corresponding delivery areas in San Francisco (150 sq. km) and the Washington, D.C., Metropolitan Area (400 sq. km). "We found that the drones could quadruple their effective flight range by strategically hitching rides on transit vehicles. We also found that the "makespan" of any batch of deliveries - the longest it took for any drone in the team to deliver one of the packages in the batch - was under an hour for San Francisco and under two hours for the Washington, D.C., area. The framework was created by the Stanford Intelligent Systems Laboratory, led by Mykel Kochenderfer, and the Autonomous Systems Laboratory, led by Marco Pavone. Kochenderfer and Pavone are associate professors in the Department of Aeronautics and Astronautics. "Delivery drones are the future," Kochenderfer said. "By using ground transit judiciously, drones have the potential to provide safe, clean and cost-effective transport."
New research leads to Army drones changing shape mid-flight Aberdeen Proving Ground MD (SPX) Jun 19, 2020 Soon, the U.S. Army will be able to deploy autonomous air vehicles that can change shape during flight, according to new research presented at the AIAA Aviation Forum and Exposition's virtual event June 16. Researchers with the U.S. Army's Combat Capabilities Development Command's Army Research Laboratory and Texas A and M University published findings of a two-year study in fluid-structure interaction. Their research led to a tool, which will be able to rapidly optimize the structural configurati ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |