Subscribe free to our newsletters via your
. Military Space News .




CYBER WARS
Security risks found in sensors for heart devices, consumer electronics
by Staff Writers
Ann Arbor MI (SPX) May 22, 2013


An artificial cadaver that is used by the Security and Privacy Research (SPQR) Lab headed by EECS Professor Kevin Fu. Researchers in SPQR use the artificial cadaver to test the security and privacy of various medical devices, including heart rate sensors, pacemakers, defibrillators, drug delivery systems, and neurostimulators. Photo: Joseph Xu, Michigan Engineering Communications and Marketing.

The type of sensors that pick up the rhythm of a beating heart in implanted cardiac defibrillators and pacemakers are vulnerable to tampering, according to a new study conducted in controlled laboratory conditions.

Implantable defibrillators monitor the heart for irregular beating and, when necessary, administer an electric shock to bring it back into normal rhythm. Pacemakers use electrical pulses to continuously keep the heart in pace.

In experiments in simulated human models, an international team of researchers demonstrated that they could forge an erratic heartbeat with radio frequency electromagnetic waves. Theoretically, a false signal like the one they created could inhibit needed pacing or induce unnecessary defibrillation shocks.

The team includes researchers from the University of Michigan, University of South Carolina, Korea Advanced Institute of Science and Technology, University of Minnesota, University of Massachusetts and Harvard Medical School.

The researchers emphasize that they know of no case where a hacker has corrupted an implanted cardiac device, and doing so in the real world would be extremely difficult.

"Security is often an arms race with adversaries," said Wenyuan Xu, assistant professor of computer science and engineering at the University of South Carolina.

"As researchers, it's our responsibility to always challenge the common practice and find defenses for vulnerabilities that could be exploited before unfortunate incidents happen. We hope our research findings can help to enhance the security of sensing systems that will emerge for years to come."

This is not the first time vulnerabilities have been identified in implantable medical devices. But the findings reveal new security risks in relatively common "analog" sensors-sensors that rely on inputs from the human body or the environment to cue particular actions.

Beyond medical devices, analog sensors are also used in microphones in Bluetooth headsets and computers in web-based phone calls. In those places, too, the researchers discovered vulnerabilities.

"We found that these analog devices generally trust what they receive from their sensors, and that path is weak and could be exploited," said Denis Foo Kune, U-M postdoctoral researcher and visiting scholar in computer science and engineering, who will present the findings May 20 at the IEEE Symposium on Security and Privacy in San Francisco.

Although these medical systems and consumer electronics have security mechanisms, the information the analog sensors receive bypasses their safety layers. The devices convert the input from the sensors directly into digital information that they use to make quick decisions.

In the category of medical devices, the researchers tested cardiac defibrillators and pacemakers in open air to determine which radio waveforms could cause interference.

Then they exposed the medical devices to those waveforms in a both a saline bath and a patient simulator. The experiments suggest that the human body likely acts as a shield, protecting the medical devices to a large degree, the researchers said.

They found that in the saline bath and the patient simulator, a perpetrator would need to be within five centimeters-about two inches-away to cause interference. Current guidelines instruct patients to keep potential sources of interference at least 27 centimeters, or 10.5 inches, away from their chest.

"People with pacemakers and defibrillators can remain confident in the safety and effectiveness of their implants," said Kevin Fu, U-M associate professor of electrical engineering and computer science.

"Patients already protect themselves from interference by keeping transmitters like phones away from their implants. The problem is that emerging medical sensors worn on the body, rather than implanted, could be more susceptible to this type of interference."

The team proposes solutions to help the sensors ensure that the signals they're receiving are authentic. Software could, in a sense, ping the cardiac tissue to determine whether the previous pulse came from the heart or from interference. If the source was not the heart, the software could raise a red flag.

The researchers also found pathways to tamper with consumer electronics. They were able to use specific radio signals to convince the mic on a phone paired with a Bluetooth headset that a caller was dialing touch-tone selections at an automated banking line. They demonstrated this by changing the call language from English to Spanish.

Foo Kune said the technique could conceivably enable more harmful scenarios such as fraudulent money transfers. In another experiment, they canceled out speech on one side of a web-based phone call and replaced it with a song (Weezer's "Island in the Sun").

"The microphone was receiving the song even though the room was silent," Foo Kune said.

"This type of interference can be prevented with shields and filters like those seen today in military-grade equipment," said Yongdae Kim, professor of electrical engineering at the Korea Advanced Institute of Science and Technology.

"Safety critical systems, such as smart grids and automated vehicles, rely more and more on sensing technology for their accurate operation. Malicious input signals with improved antenna and power may cause serious safety problems."

Last week, the Archimedes Center for Medical Device Security at U-M held a private briefing and problem solving session for medical device manufacturers and trauma centers. The paper is called "Ghost Talk: Mitigating EMI Signal Injection Attacks against Analog Sensors."

Archimedes Center for Medical Device Security at U-M workshop

.


Related Links
University of Michigan
Cyberwar - Internet Security News - Systems and Policy Issues






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CYBER WARS
Four Lulzsec hackers sentenced to jail in Britain
London (AFP) May 16, 2013
Four members of the LulzSec international hacking group were sentenced to prison terms in Britain on Thursday for masterminding cyber attacks on major global institutions, including Sony Pictures and the CIA. Ryan Cleary, 21, Jake Davis, 20, Mustafa Al-Bassam, 18, and Ryan Ackroyd, 26, saw themselves as "latter-day pirates" when they carried out the attacks on organisations which also inclu ... read more


CYBER WARS
Raytheon's newest Standard Missile-3 takes out complex, separating short-range ballistic missile target

Oman to buy $2.1B Raytheon missile system

Second Generation Aegis Ballistic Missile Defense System Intercepts Ballistic Missile Target

U.S. seeks $220 million for Israel missile defense

CYBER WARS
Lockheed Martin and the MDA Conduct Test of New Air-Launched Missile Target Prototype

ESSM intercept of high-diving threat proves expanded defensive capability

Israel 'determined' to halt Syria missile deal: minister

Raytheon, US Army complete AI3 control vehicle tests

CYBER WARS
Raytheon delivers electronic jamming capability for Gray Eagle UAS

Israel said to be world leader in UAV exports

'Minimal' drone effects on Pakistan militant recruits: ICG

Australia considers UAS acquisition

CYBER WARS
US Navy And Lockheed Martin Deliver Secure Communications Satellite For Mobile Users

Making frequency-hopping radios practical

Northrop Grumman Proves Concept for New B-2 Satellite Communication System

US Navy and Lockheed Martin Deliver Newest Secure Communications Satellite for Mobile Users

CYBER WARS
China police billions spell profit opportunity

Lockheed Martin's JASSM Extended Range Completes IOT and E Flight Testing

Outside View: Whetting the Spearhead

Brazil picks suppliers for electronic border fence

CYBER WARS
Unspent billions of Chilean defense fund remain a mystery

US, Oman talk $2.1 bln defense deal

Kerry to help ink $2.1 bln defense deal in Oman

Zimbabwe PM's party pledges trimmer army, just society

CYBER WARS
US summit will help 'reduce suspicion': China media

China, Pakistan plan 'economic corridor': Li

Obama to meet Xi in California in June

India, China vow to end long-running border dispute

CYBER WARS
RUB physicists let magnetic dipoles interact on the nanoscale for the first time

Squishy hydrogels may be the ticket for studying biological effects of nanoparticles

Friction in the nano-world

The science behind a self-assembled nano-carbon helix




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement