![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Washington DC (SPX) Feb 07, 2017
Few scenes capture the U.S. Navy's prowess as effectively as the rapid-fire takeoff and recovery of combat jets from the deck of an aircraft carrier. The ability to carry air power anywhere in the world, and both launch those aircraft to flight speed and bring them to a stop over extremely short distances, has been essential to carriers' decades-long dominance of naval warfare. To help provide similar capabilities-minus the 90,000-ton carriers-to U.S. military units around the world, DARPA's SideArm research effort seeks to create a self-contained, portable apparatus able to horizontally launch and retrieve unmanned aerial systems (UASs) of up to 900 pounds. In December 2016, Aurora Flight Sciences successfully tested a full-scale technology demonstration system that repeatedly captured a 400-pound Lockheed Martin Fury UAS accelerated to representative flight speeds via an external catapult. The system is capable of recovering aircraft up to 1,100 pounds, exceeding DARPA's design objectives. SideArm fits in the footprint of a standard 20-foot shipping container for easy transport by truck, ship, rail, C-130 transport aircraft, and CH-47 heavy-lift helicopter. The small-footprint system is designed to operate in truck-mounted, ship-mounted, and standalone/fixed-site facilities. A crew of only two to four people can set up or stow the system in minutes. SideArm owes its small size to combining its launch and capture equipment into a single rail that folds for transport. Rather than using a traditional capture method that uses a net to catch the UAS, the system snags a hook on the back of the vehicle and directs the hook to travel down the rail. This approach provides slower, more constant and controlled deceleration, which is safer for the vehicle. "SideArm aims to replicate carriers' capability to quickly and safely accelerate and decelerate planes through a portable, low-cost kit that is mission-flexible, independent from local infrastructure, and compatible with existing and future tactical unmanned aircraft," said Graham Drozeski, DARPA program manager. "We've demonstrated a reliable capture mechanism that can go anywhere a 20-foot container can go-the DARPA-worthy challenge we had to overcome to make SideArm's envisioned capabilities possible. We are pleased with the progress we've made enabling a wide variety of sea- and land-based platforms with persistent intelligence, surveillance, and reconnaissance (ISR) and strike capabilities." SideArm is part of DARPA's individual investment in Phase 1 research for Tern, a joint program between DARPA and the U.S. Navy's Office of Naval Research (ONR). Now that demonstration of the capture system is complete, DARPA is working to identify potential transition partners and exploring using SideArm with other UAS platforms.
![]() ![]()
Related Links Defense Advanced Research Projects Agency UAV News - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |