. Military Space News .
UAV NEWS
Tern moves closer to full-scale demonstration of VTOL UAVs for small ships
by Staff Writers
Washington DC (SPX) Jan 01, 2016


"Through Tern, we seek to develop and demonstrate key capabilities for enabling distributed, disaggregated U.S. naval architectures in the future," said Bradford Tousley, director of DARPA's Tactical Technology Office (TTO), which oversees Tern.

Small-deck ships such as destroyers and frigates could greatly increase their effectiveness if they had their own unmanned air systems (UASs) to provide intelligence, surveillance and reconnaissance (ISR) and other capabilities at long range around the clock.

Current state-of-the-art UASs, however, lack the ability to take off and land from confined spaces in rough seas and achieve efficient long-duration flight. Tern, a joint program between DARPA and the U.S. Navy's Office of Naval Research (ONR), seeks to provide these and other previously unattainable capabilities. As part of Tern's ongoing progress toward that goal, DARPA has awarded Phase 3 of Tern to a team led by the Northrop Grumman Corporation.

The first two phases of Tern successfully focused on preliminary design and risk reduction. In Phase 3, DARPA plans to build a full-scale demonstrator system of a medium-altitude, long-endurance UAS designed to use forward-deployed small ships as mobile launch and recovery sites.

Initial ground-based testing, if successful, would lead to an at-sea demonstration of takeoff, transition to and from horizontal flight, and landing-all from a test platform with a deck size similar to that of a destroyer or other small surface-combat vessel.

"The design we have in mind for the Tern demonstrator could greatly increase the effectiveness of any host ship by augmenting awareness, reach and connectivity," said Dan Patt, DARPA program manager.

"We continue to make progress toward our goal to develop breakthrough technologies that would enable persistent ISR and strike capabilities almost anywhere in the world at a fraction of current deployment costs, time and effort."

"ONR's and DARPA's partnership on Tern continues to make rapid progress toward creating a new class of unmanned air system combining shipboard takeoff and landing capabilities, enhanced speed and endurance, and sophisticated supervised autonomy," said Gil Graff, deputy program manager for Tern at ONR.

"If successful, Tern could open up exciting future capabilities for Navy small-deck surface combatants and U.S. Marine Corps air expeditionary operations."

"Through Tern, we seek to develop and demonstrate key capabilities for enabling distributed, disaggregated U.S. naval architectures in the future," said Bradford Tousley, director of DARPA's Tactical Technology Office (TTO), which oversees Tern.

"This joint DARPA-Navy effort is yet another example of how the Agency collaborates with intended transition partners to create potentially revolutionary capabilities for national security."

The Tern Phase 3 design envisions a tailsitting, flying-wing aircraft with twin counter-rotating, nose-mounted propellers. The propellers would lift the aircraft from a ship deck, orient it for horizontal flight and provide propulsion to complete a mission.

They would then reorient the craft upon its return and lower it to the ship deck. The system would fit securely inside the ship when not in use.

Tern's potentially groundbreaking capabilities have been on the Navy's wish list in one form or another since World War II. The production of the first practical helicopters in 1942 helped the U.S. military realize the potential value of embedded vertical takeoff and landing (VTOL) aircraft to protect fleets and reduce the reliance on aircraft carriers and land bases.

The Tern demonstrator will bear some resemblance to the Convair XFY-1 Pogo, an experimental ship-based VTOL fighter designed by the Navy in the 1950s to provide air support for fleets.

Despite numerous successful demonstrations, the XFY-1 never advanced beyond the prototype stage, in part because the Navy at the time was focusing on faster jet aircraft and determined that pilots would have needed too much training to land on moving ships in rough seas.

"Moving to an unmanned platform, refocusing the mission and incorporating modern precision relative navigation and other technologies removes many of the challenges the XFY-1 and other prior efforts faced in developing aircraft based from small ships," Patt said. "Tern is a great example of how new technologies and innovative thinking can bring long-sought capabilities within reach."

DARPA and the Navy have a Memorandum of Agreement (MOA) to share responsibility for the development and testing of the Tern demonstrator system. The Marine Corps Warfighting Laboratory (MCWL) has also expressed interest in Tern's potential capabilities and is providing support to the program.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Defense Advanced Research Projects Agency
UAV News - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
UAV NEWS
DARPA awards Northrop Grumman Phase III TERN contract
Washington (UPI) Dec 28, 2015
The Defense Advanced Research Projects Agency selected Northrop Grumman to develop a a medium-altitude, long-endurance unmanned aerial vehicle that can be launched from smaller ships. The Tactically Exploited Reconnaissance Node, or TERN, program supports the development of a medium-altitude, long-endurance unmanned aerial vehicle capable of being launched from smaller ships. DAR ... read more


UAV NEWS
Saudi intercepts missile fired from Yemen capital

Germany withdraws Patriot missiles from Turkey

Israeli missile interceptor passes final test

New SBIRS ground system celebrates two major milestones

UAV NEWS
Iranian navy test fires rockets near US carrier

China tests rail-based long-range missile capable of hitting US

Russia delivers S-300 missile system to Kazakhstan free of charge

Poland acquiring air defense system

UAV NEWS
DARPA awards Northrop Grumman Phase III TERN contract

Drone helps icebreaker navigate treacherous Antarctic

Army unit retires Hunter unmanned aircraft systems

Italy receives Predator-A drones

UAV NEWS
ADS to build one of two satellites for future COMSAT NG system

Thales and Airbus to supply French military satellite communications

Elbit upgrades tactical intelligence capabilities for Asian country

New tactical radio order for Harris Corporation

UAV NEWS
Turkey contracts Otokar for Cobra II armored vehicles

Forensic seismology tested on 2006 munitions depot 'cook-off' in Baghdad

Kongsberg Protector selected for General Dynamics Stryker

German Army orders more Boxer armored vehicles

UAV NEWS
U.S., Russia dominate arms transfers to developing countries

Pentagon needs to cut more civilian jobs, report finds

PM Abe's cabinet approves largest defence budget

Italy's Finmeccanica reorganizes

UAV NEWS
We have met the enemy and he is us

China arrests third Japanese, detains another for spying: Tokyo

Anti-China group sails to Philippine-held island

'Armed' China ship near disputed isles: Japan

UAV NEWS
New acoustic technique reveals structural information in nanoscale materials

Program seeks ability to assemble atom-sized pieces into practical products

Nanodevices at one-hundredth the cost

Scientists blueprint tiny cellular 'nanomachine'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.