![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Bristol UK (SPX) Jan 13, 2017
The very first unmanned aerial vehicle (UAV) to perform a perched landing using machine learning algorithms has been developed in partnership with the University of Bristol and BMT Defence Services (BMT). The revolutionary development of a fixed wing aircraft that can land in a small or confined space has the potential to significantly impact intelligence-gathering and the delivery of aid in a humanitarian disaster. BMT, a subsidiary of BMT Group Ltd, and the University of Bristol have demonstrated how the combination of a morphing wing UAV and machine learning can be used to generate a trajectory to perform a perched landing on the ground. The UAV has been tested at altitude to validate the approach and the team are working towards a system that can perform a repeatable ground landing. Current UAVs are somewhat restrictive in that they have fixed and rigid wings, which reduces the flexibility in how they can fly. The primary goal of the work was to look at extending the operation of current fixed wing UAVs by introducing morphing wing structures inspired by those found in birds. To control these complex wing structures, BMT utilised machine learning algorithms to learn a flight controller using inspiration from nature. Simon Luck, Head of Information Services and Information Assurance at BMT Defence Services, commented: "Innovation is at the heart of everything we do at BMT and R and D projects provide us with the opportunity to work with our partners to develop cutting edge capabilities that have the potential to revolutionise the way we gather information." Dr Tom Richardson, Senior Lecturer in Flight Mechanics in the Department of Aerospace Engineering at the University of Bristol, added: "The application of these new machine learning methods to nonlinear flight dynamics and control will allow us to create highly manoeuvrable and agile unmanned vehicles. I am really excited about the potential safety and operational performance benefits that these new methods offer." The 18-month research project was delivered as part of the Defence Science and Technology Laboratory's (Dstl) Autonomous Systems Underpinning Research (ASUR) programme.
![]() ![]()
Related Links University of Bristol UAV News - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |