Subscribe free to our newsletters via your
. Military Space News .

'Space bubbles' may have aided enemy in fatal Afghan battle
by Staff Writers
Washington DC (SPX) Sep 25, 2014

Tendrils of low-density, charged particles are called plasma bubbles, and turbulence at their edges can skew radio frequency waves passing through them. APL researchers provide evidence that plasma bubbles may have contributed to the communications outages during a 2002 Afghanistan battle. Image courtesy NASA.

In the early morning hours of March 4, 2002, military officers in Bagram, Afghanistan desperately radioed a Chinook helicopter headed for the snowcapped peak of Takur Ghar. On board were 21 men, deployed to rescue a team of Navy SEALS pinned down on the ridge dividing the Upper and Lower Shahikot valley. The message was urgent: Do not land on the peak. The mountaintop was under enemy control.

The rescue team never got the message. Just after daybreak, the Chinook crash-landed on the peak under heavy enemy fire and three men were killed in the ensuing firefight.

A decade later, Michael Kelly, of the Johns Hopkins University Applied Physics Laboratory (APL), happened to read a journalistic account of Operation Anaconda, one of the first major battles of the War in Afghanistan, and thought radio operators may have been thwarted by a little-known source of radio interference: plasma bubbles.

Now, Kelly and his colleagues provide evidence that plasma bubbles may have contributed to the communications outages during the battle of Takur Ghar and present a new computer model that could help predict the impact of such bubbles on future military operations. Their work has been accepted for publication in a journal of the American Geophysical Union called Space Weather.

Giant plasma bubbles -wispy clouds of electrically charged gas particles - form after dark in the upper atmosphere. Typically around 100 kilometers (62 miles) wide, the bubbles can't be seen but they can bend and disperse radio waves, interfering with communications.

Plasma is pervasive in the upper atmosphere during daylight hours when the sun's radiation rips electrons from atoms and molecules. Sunlight keeps the plasma stable during the day, but at night, the charged particles recombine to form electrically neutral atoms and molecules again.

This recombination happens faster at lower altitudes, making the plasma there less dense, so that it bubbles up through the denser plasma above, like air bubbles rising through water. The rising tendrils of low-density, charged particles are called plasma bubbles, and turbulence at their edges can skew radio frequency waves passing through them.

In the atmosphere above Afghanistan, peak bubble season generally occurs during the spring, according to the study's authors. Given the timing and location of the battle of Takur Ghar, the researchers thought these atmospheric anomalies could have been present.

To confirm their suspicions, Kelly's team looked at data from the Global Ultraviolet Imager(GUVI) instrument aboard NASA's Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) mission, which launched in 2001 to study the composition and dynamics of the upper atmosphere.

"The TIMED spacecraft flew over the battle field at about the right time," said Kelly, the lead author of the new study. That was a stroke of luck for the researchers, Kelly noted-and realizing that that spacecraft might have been there was a breakthrough moment.

Joseph Comberiate, a space physicist at APL and a co-author of the new study, developed a technique to transform the two-dimensional satellite images into three-dimensional representations of plasma bubbles.

Using this technique, the authors were able to show that on March 4, 2002 there was a plasma bubble directly between the ill-fated Chinook and the communications satellite. The new model shows the electron-depleted regions of the atmosphere where radio wave interference, known as scintillation, is most likely to occur.

The plasma bubble that was present during the battle of Takur Ghar was probably not large enough to disturb radio communications by itself, but likely contributed to the radio interference caused by the complex terrain in the area, according to the new study.

Both factors ultimately led to the black-out in communications between the operations center and the helicopter, the new research says. In that kind of terrain, the radio equipment was already "operating out on the edge," said Kelly. Losing a few decibels of radio signal due to plasma bubbles "could have pushed them over the edge," he suggested.

The new model could be used to minimize the impacts of plasma bubbles in the future by detecting and predicting their movement for several hours after they form, the researchers said. The model combines data from several different satellite-based systems to detect the bubbles and uses wind and atmospheric models to predict where they will drift.

By identifying these turbulent bubbles and their paths in real time, soldiers may be able to predict when and where they will experience radio interferences and adapt by using a different radio frequency or some other means of communication, said Comberiate. The group is currently working to validate the new model so it can be used in future military operations.

"The most exciting part for me is to see something go from science to real, potential operational impact," he said.


Related Links
American Geophysical Union
Read the latest in Military Space Communications Technology at

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Space control Airmen ensure constant communication
Peterson AFB CO (SPX) Sep 18, 2014
Air Force Space Command's 16th Space Control Squadron in partnership with the Air Force Reserve Command's 380th SPCS is responsible for ensuring the Defense Department has uninterrupted global satellite communications. Located at Peterson Air Force Base, Colo., two squadrons are responsible for operating space control capabilities to rapidly achieve flexible and versatile space superiority ... read more

Raytheon producing backup components for missile defense radar

Raytheon providing ongoing support for Patriot air defense system

Israel, US test upgraded Arrow 2 missile interceptor

INFORMS Study on Iron Dome Asks: What Was its Impact?

U.S. Navy eyes Norwegian missile

Raytheon announces full-rate production of Talon rocket

China shows off new missile test on primetime television

Diehl delivers 4,000th production IRIS-T missile to Sweden

IBC Advanced Alloys Delivers First UAS Components for Analysis

Fury glide bomb dropped from Shadow UAS

Iran unveils new missile-equipped drone

Watch: MQ-4C Triton UAV flies cross-country for new testing

Space control Airmen ensure constant communication

Russian Aerospace Defense Forces Again Dismiss Satellite Explosion Rumors

Harris Corporation supplying radios to Air Force Special Operations Command

Harris Corporation supply Falcon III RF-340M radios to U.S. military

Exosuit Aims to Prevent Injury in Warfighters

Australia OKs low-rate production of new military rifle

BAE, Patria team to win armored vehicle contract from Australia

Oshkosh passes review in competition to replace the Humvee

Poland, Pakistan, Lebanon seek U.S. military hardware

Airbus to restructure defence division, sell off units

Netherlands ups defence spending in wake of downed MH17

Israeli arms sale to Ukraine blocked: report

China and Japan resume maritime talks: Xinhua

NATO says Russian forces 'still inside Ukraine'

Chinese warships in first call at an Iran port: media

India says Modi raised China border incursions with Xi

Nanoribbon film keeps glass ice-free

Rice rolls 'neat' nanotube fibers

Decoding the role of water in gold nanocatalysis

Magnetic nanocubes self-assemble into helical superstructures

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.