. Military Space News .
STELLAR CHEMISTRY
Astronomers detect a radio "heartbeat" billions of light-years from Earth
by Staff Writers
Montreal, Canada (SPX) Jul 14, 2022

The main difference between the new signal and radio emissions from our own galactic pulsars and magnetars is that FRB 20191221A appears to be more than a million times brighter. Michilli says the luminous flashes may originate from a distant radio pulsar or magnetar that is normally less bright as it rotates and for some unknown reason ejected a train of brilliant bursts, in a rare three-second window that CHIME was luckily positioned to catch.

Astronomers at McGill University, MIT and elsewhere have detected a strange and persistent radio signal from a far-off galaxy, that appears to be flashing with surprising regularity. Classified as a fast radio burst, or FRB, this new signal persists for up to three seconds, about 1,000 times longer than the average FRB. Within this window, the team detected bursts of radio waves that repeat every 0.2 seconds in a clear periodic pattern.

The researchers have labeled the signal FRB 20191221A. It is currently the longest-lasting FRB, with the clearest periodic pattern, detected to date. The discovery is reported in the journal Nature and is authored by members of the CHIME/FRB Collaboration.

On December 21, 2019, the CHIME telescope picked up a signal of a potential FRB, which immediately drew the attention of Daniele Michilli, who noticed something unusual while scanning the incoming data.

"Not only was it very long, lasting about three seconds, but there were periodic peaks that were remarkably precise, emitting every fraction of a second - boom, boom, boom - like a heartbeat," recalls Michilli, who led the research, initially while at McGill University and then as a postdoc at MIT. "This is the first time the signal itself is periodic."

"There are not many things in the universe that emit strictly periodic signals," adds Aaron Pearlman, a FRQNT postdoctoral fellow at the McGill Space Institute who also collaborated on the paper. "Examples that we know of in our own galaxy are radio pulsars and magnetars, which rotate and produce a beamed emission similar to a lighthouse. And we think this new signal could be a magnetar or pulsar on steroids."

The team hopes to detect more periodic signals from this source, which could then be used as an astrophysical clock. For instance, the frequency of the bursts, and how they change as the source moves away from Earth, could be used to measure the rate at which the universe is expanding.

Brilliant bursts
In analyzing the pattern of FRB 20191221A's radio bursts, Michilli and his colleagues found similarities with emissions from radio pulsars and magnetars in our own galaxy. Radio pulsars are neutron stars that emit beams of radio waves, appearing to pulse as the star rotates, while a similar emission is produced by magnetars due to their extreme magnetic fields.

The main difference between the new signal and radio emissions from our own galactic pulsars and magnetars is that FRB 20191221A appears to be more than a million times brighter. Michilli says the luminous flashes may originate from a distant radio pulsar or magnetar that is normally less bright as it rotates and for some unknown reason ejected a train of brilliant bursts, in a rare three-second window that CHIME was luckily positioned to catch.

"CHIME has now detected many FRBs with different properties," Michilli says. "We've seen some that live inside clouds that are very turbulent, while others look like they're in clean environments. From the properties of this new signal, we can say that around this source, there's a cloud of plasma that must be extremely turbulent."

The astronomers hope to catch additional bursts from the periodic FRB 20191221A, which can help to refine their understanding of its source, and of neutron stars in general.

"This detection raises the question of what could cause this extreme signal that we've never seen before, and how we can use this signal to study the universe," Michilli says. "Future telescopes promise to discover thousands of FRBs a month, and at that point we may find many more of these periodic signals."

Research Report:"Sub-second periodicity in a fast radio burst"


Related Links
McGill University
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Falling stardust, wobbly jets explain blinking gamma ray bursts
Evanston IL (SPX) Jun 30, 2022
A Northwestern University-led team of astrophysicists has developed the first-ever full 3D simulation of an entire evolution of a jet formed by a collapsing star, or a "collapsar." Because these jets generate gamma ray bursts (GRBs) - the most energetic and luminous events in the universe since the Big Bang - the simulations have shed light on these peculiar, intense bursts of light. Their new findings include an explanation for the longstanding question of why GRBs are mysteriously punctuated by ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Canada announces new Arctic air, missile defenses with US

Belarus buys S-400, Iskander missiles from Russia: Lukashenko

Turkey says still talking to Russia about missile deliveries

Lockheed Martin to produce 8th THAAD Battery for US Govt

STELLAR CHEMISTRY
Operational Fires Program completes first flight test

Himars precision rockets shift the balance in Ukraine: experts

Lockheed Martin Delivers First Modernized M270A2 To US Army

North Korea fires suspected rocket launchers: Seoul

STELLAR CHEMISTRY
Russia visits Iran twice in last month to assess drones;Iran unveils naval UAV division

US drone strike kills Islamic State Syria chief: Pentagon

Russia seeks Iran drones after losses in Ukraine: White House

Lithuania to send Ukraine crowdfunded combat drone

STELLAR CHEMISTRY
New satellite series adds capabilities to China's data relay capacity

SKYNET 6A satellite passes Critical Design Review

Airbus to provide 42 satellite platforms and services to Northrop Grumman for the US Space Development Agency program

Northrop Grumman runs Laser Communication Demonstration for Tranche 1 constellation

STELLAR CHEMISTRY
DARPA 'SNAPs' up new tools for predicting warfighter readiness

US announces more missiles, ammunition for Ukraine

Raytheon Technologies awarded next phase for US Army TITAN program

Kyiv mayor pleads for more weapons at NATO summit

STELLAR CHEMISTRY
Kyiv urges control of arms deliveries amid smuggling concerns

EU creates Moldova hub to stem arms trade from Ukraine

Russia claims Ukraine arms spreading to Middle East, black market

Spain govt bitterly split over upping military spend

STELLAR CHEMISTRY
Solomons says foreign base would make it a military target

UK military chief says Putin health rumours are 'wishful thinking'

Erdogan renews threat to 'freeze' Swedish, Finnish NATO bids

In south Ukraine, Moscow supporters snap up Russian passports

STELLAR CHEMISTRY
Towards stable, sustained Raman imaging of large samples at the nanoscale

A mirror tracks a tiny particle

New silicon nanowires can really take the heat

Cooling speeds up electrons in bacterial nanowires









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.