. Military Space News .
NUKEWARS
Radar reveals details of mountain collapse of North Korea nuclear test site
by Staff Writers
Berkeley CA (SPX) May 11, 2018

illustration only

As North Korea's president pledges to "denuclearize" the Korean peninsula, an international team of scientists is publishing the most detailed view yet of the site of the country's latest and largest underground nuclear test on Sept. 3, 2017.

The new picture of how the explosion altered the mountain above the detonation highlights the importance of using satellite radar imaging, called SAR (synthetic aperture radar), in addition to seismic recordings to more precisely monitor the location and yield of nuclear tests in North Korea and around the world.

The researchers - Teng Wang, Qibin Shi, Shengji Wei and Sylvain Barbot from Nanyang Technological University in Singapore, Douglas Dreger and Roland Burgmann from the University of California, Berkeley, Mehdi Nikkhoo from the German Research Centre for Geosciences in Potsdam, Mahdi Motagh from the Leibniz Universitat Hannover, and Qi-Fu Chen from the Chinese Academy of Sciences in Beijing - will report their results online this week in advance of publication in the journal Science.

That explosion took place under Mt. Mantap at the Punggye-ri nuclear test site in the country's north, rocking the area like a 5.2-magnitude earthquake. Based on seismic recordings from global and regional networks, and before-and-after radar measurements of the ground surface from Germany's TerraSAR-X and Japan's ALOS-2 radar imaging satellites, the team showed that the underground nuclear blast pushed the surface of Mt. Mantap outward by as much as 11 feet (3.5 meters) and left the mountain about 20 inches (0.5 meters) shorter.

By modelling the event on a computer, they were able to pinpoint the location of the explosion, directly under the mile-high summit, and its depth, between a quarter and a third of a mile (400-600 meters) below the peak.

They also located more precisely another seismic event, or aftershock, that occurred 8.5 minutes after the nuclear explosion, putting it some 2,300 feet (700 meters) south of the bomb blast. This is about halfway between the site of the nuclear detonation and an access tunnel entrance and may have been caused by the collapse of part of the tunnel or of a cavity remaining from a previous nuclear explosion.

"This is the first time the complete three-dimensional surface displacements associated with an underground nuclear test were imaged and presented to the public," said lead author Teng Wang of the Earth Observatory of Singapore at Nanyang Technological University.

Putting all of this together, the researchers estimate that the nuclear test, North Korea's sixth and the fifth inside Mt. Mantap, had a yield between 120 and 300 kilotons, about 10 times the strength of the bomb dropped by the United States on Hiroshima during World War II. That makes it either a small hydrogen, or fusion, bomb or a large atomic, or fission, bomb.

The new scenario differs from two reports last week, one of which has been accepted for publication in the journal Geophysical Research Letters, that pinpointed the blast nearly a kilometer to the northwest of the site identified in the new paper, and concluded that the blast rendered the entire mountain unfit for future nuclear tests.

"SAR really has a unique role to play in monitoring explosions because it is direct imaging of the local ground surface, unlike seismology, where you learn the nature of the source analyzing waves radiating outward from the event at distant stations," said Dreger, a UC Berkeley professor of earth and planetary science and a member of the Berkeley Seismological Laboratory. "SAR provides some measure of ground truthing of the location of the event, a very challenging thing to get at. This is the first time anyone has actually modeled the mechanics of an underground explosion using satellite and seismic data together."

"As opposed to standard optical imaging satellite imagery, SAR can be used to measure earth deformation day and night and under all weather conditions," added Dreger's colleague and co-author Roland Burgmann, a UC Berkeley professor of earth and planetary science. "By precisely tracking the image pixel offsets in multiple directions, we were able to measure the full three-dimensional surface deformation of Mt. Mantap."

According to Dreger, the new information suggests the following scenario: The explosion occurred more than a quarter mile (450 meters) below the summit of Mt. Mantap, vaporizing granite rock within a cavity about 160 feet (50 meters) across - the size of a football stadium - and damaging a volume of rock about 1,000 feet (300 meters) across. The blast likely raised the mountain six feet (2 meters) and pushed it outward up to 11 feet (3-4 meters), though within minutes, hours or days the rock above the cavity collapsed to form a depression.

Eight and a half minutes after the bomb blast, a nearby underground cavity collapsed, producing the 4.5-magnitude aftershock with the characteristics of an implosion.

Subsequently, a much larger volume of fractured rock, perhaps 1 mile (1-2 kilometers) across, compacted, causing the mountain to subside to about 1.5 feet (0.5 meters) lower than before the blast.

"There may be continuing post-explosion compaction at the mountain. It takes time for these aseismic processes to occur," Dreger said.

While it is possible to discriminate explosions from natural earthquakes using seismic waveforms, the uncertainty can be large, Dreger said. Explosions often trigger nearby earthquake faults or other natural rock movements that make the seismic signals look earthquake-like, confusing the analysis. The SAR data revealed that additional constraints from the local static displacement can help to narrow down the source.

"I am hoping that by jointly analyzing the geodetic and seismic data, we will be able to improve discrimination between earthquakes and explosions, and certainly help with estimating the yield of an explosion and improving our estimation of source depth," Dreger said.

"This study demonstrates the capability of spaceborne remote sensing to help characterize large underground nuclear tests, if any, in the future," Wang said. "While surveillance of clandestine nuclear tests relies on a global seismic network, the potential of spaceborne monitoring has been underexploited."


Related Links
University of California - Berkeley
Learn about nuclear weapons doctrine and defense at SpaceWar.com
Learn about missile defense at SpaceWar.com
All about missiles at SpaceWar.com
Learn about the Superpowers of the 21st Century at SpaceWar.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NUKEWARS
Xi urges Trump to consider N. Korea's 'reasonable security concerns'
Beijing (AFP) May 8, 2018
Chinese President Xi Jinping urged US counterpart Donald Trump to take Pyongyang's "reasonable security concerns" into consideration, in a phone call Tuesday hours after Xi met North Korean leader Kim Jong Un. Xi told Trump that he supports the planned meeting between the US and North Korean leaders, according to Chinese state broadcaster CCTV. The Chinees president "hopes the US and North Korea can work together, build mutual trust" and "consider North Korea's reasonable security concerns," the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NUKEWARS
Israel missiles hit Syria military bases: state media

Lockheed tapped for additional THAAD interceptors

Fourth US Air Force SBIRS satellite sends first images back to Earth

Saudi Arabia downs four Yemeni rebel missiles: coalition

NUKEWARS
Israeli army says has hit 'dozens' of Iranian military targets in Syria

Israel orders Golan shelters open over Iran 'activity' in Syria

Beijing 'installs missiles' on South China Sea islands

MDA taps Raytheon for ongoing SM-3 missile production

NUKEWARS
Raytheon tapped for upgrades on Gray Eagle drones

Talking UAS market trends with NSR analyst Gagan Agrawal

Lockheed announces first US customer for universal unmanned vehicle control station

Lockheed Martin small Quadrotor Unmanned Aerial System upgraded with high resolution thermal imaging capability

NUKEWARS
Silent Sentry: Protecting Space Communications

Harris tapped for counter communication systems

Russia Launches Heavy Rocket with Military Satellite

India Struggling to Establish Lost Link With Crucial Communication Satellite

NUKEWARS
BAE Systems tapped for HERCULES recovery vehicles

Marine Corps contracts for enhanced combat helmets

ContiTech to provide Saudi Arabia, Kuwait with Abrams tank parts

Army taps Tecmotiv USA for tank engine overhauls

NUKEWARS
BAE welcomes Australian economic plan for defense industry

US to update Saudi artillery for $1.31 billion

74% of French people against weapons sales to Saudi: poll

Mattis wins big with budget victory

NUKEWARS
US, Philippine troops storm ashore in bulked-up drills

Bitter pill for European leaders as Trump abandons Iran deal

Japan's Abe accepts China invite, but no date set

Russia shows off military hardware in Red Square parade

NUKEWARS
A new Bose-Einstein condensate created at Aalto University

Course set to overcome mismatch between lab-designed nanomaterials and nature's complexity

This 2-D nanosheet expands like a Grow Monster

Robot developed for automated assembly of designer nanomaterials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.