![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Oberpfaffenhofen, Germany (SPX) Mar 17, 2022
The wind is not just 'wind' - but a complicated arrangement of turbulent features that are influenced by the surrounding environment. Air turbulence is created by the landscape, but also by buildings, roads and wind turbines. In the ESTABLIS-UAS project, the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) is researching these flow effects. For this purpose, a swarm of drones ascends and measures these phenomena. The results can be used, for example, to improve the arrangement of turbines in a wind farm. "Wind turbines are among the most important technologies for sustainable energy supply, both in Germany and worldwide. The further expansion of wind energy requires a significant increase in the performance of wind turbines. For this reason, the DLR Executive Board has decided to increase the annual funding for wind energy research by one million euros with immediate effect," explains Anke Kaysser-Pyzalla, Chair of the DLR Executive Board. "DLR has been conducting research in this area for many years. Its activities make use of the many synergies with aerospace research. The work ranges from fundamental research to the further development of individual components in cooperation with industry." "Understanding these turbulent, three-dimensional conditions plays an important role in the energy transition. This allows us to comprehend the loads to which wind turbines will be subjected during their lifecycle and to predict how much power they will feed into the energy grid," says project leader Norman Wildmann from DLR's Institute of Atmospheric Physics. Up to 100 drones take off from the ground in a fixed formation for the ESTABLIS-UAS (Exposing spatio-temporal Structures of Turbulence in the Atmospheric Boundary Layer with In-Situ measurements by a fleet of Unmanned Aerial Systems) project. The Unmanned Aerial Systems (UAS) measure wind characteristics, temperature and humidity with high resolution. Tests were carried out in advance with up to 20 of these small drones. They are particularly robust so that they can maintain their position and deliver results even at higher wind speeds.
Tests in a wind tunnel and at the Wind Energy Research Farm "There is still some need for optimisation here. The answers to questions about how the wind behaves at these points are very complex," explains Wildmann. "And this is not only dependent on the turbine, but also on local atmospheric conditions and the properties of the surrounding terrain. It is about a combination of the two." In addition to measurements on wind turbines, experiments are planned in the wind tunnel at the University of Oldenburg, which is a partner in the Research Alliance Wind Energy (Forschungsverbund Windenergie; FVWE), and at the DLR Wind Energy Research Farm in Krummendeich. Two further measurement campaigns will take place as part of the international TEAMx initiative, which is dedicated to the study of complex flows in the boundary layer over mountainous terrain. All experiments will be supplemented by numerical simulations. Ultimately, a comprehensive model for the representation of turbulent flows will be created.
Models of the atmospheric boundary layer complement knowledge from remote sensing Turbulence from interconnected features such as gusts, slope and valley winds, cities, wind turbines or aircraft are difficult to capture. "The ESTABLIS-UAS measurements fill an observational gap between very small, local processes near the ground and large-scale observations by remote sensing, research aircraft and satellites," says Markus Rapp, Director of the DLR Institute of Atmospheric Physics in Oberpfaffenhofen. "Combining this with ground-based sensors and remote sensing enables completely new insights into the interaction of complex flow phenomena." These models could then also explain how turbulent flows influence the mixing of the lower atmosphere. This is important, for example, in the dispersion of dust, pollutants and aerosols.
![]() ![]() Northrop Grumman completes ferry flight of Japan's RQ-4B Global Hawk San Diego CA (SPX) Mar 15, 2022 Northrop Grumman Corporation has ferried the first of Japan's three RQ-4B Global Hawks via a non-stop transpacific flight. The aircraft departed on Thursday, March 10, from Palmdale, California landing 18.7 hours later on March 12 at Misawa Air Base, Misawa, Japan. "The arrival of the first Japan Global Hawk is an important milestone in the development of this critical security asset," said Jane Bishop, vice president and general manager, global surveillance, Northrop Grumman. "The autonomou ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |