. Military Space News .
MILTECH
Future Army vehicles could see an improvement in structural materials
by Staff Writers
Aberdeen Proving Ground MD (SPX) Apr 16, 2020

Army researchers look at new structural materials for unmanned vehicles systems, such as the RQ-7B Shadow shown here, because these materials are less susceptible to corrosion, lightweight and have higher electrical conductivity than traditional elastomers.

Materials used for a Soldier's personal protection gear may be tough enough for vehicles too, according to a new Army study. Findings, released April 10 in the journal Polymer, show that polymers filled with carbon nanotubes could potentially improve how unmanned vehicles dissipate energy. A team led by the U.S. Army's Combat Capabilities Development Command's Army Research Laboratory is conducting theoretical research through computer modeling.

"Our motivation for this research is that there could potentially be a use, as matrix material, for incorporation into lightweight composites in unmanned vehicle systems," said Dr. Yelena R. Sliozberg, a computational materials scientist at the laboratory.

Researchers said polyurethanes are versatile materials used in a broad variety of applications, including coatings, foams and solid elastomers. As film adhesives, for example, they are commonly used as bonding agents between layers of glass and as polymer back layers in the transparent glass or plastic composites such as vision blocks on side windows used in the tactical vehicles. In particular, high-performance segmented PUU polymers exhibit versatile physical and mechanical properties.

In this research, the team used computer modeling to look into the nature of the materials.

Sliozberg said hierarchical composites are a promising area of research for the Army vehicles as they are less susceptible to corrosion, leading to early component death.

"In contrast to traditional thermoset composites performance poly(urethaneurea) elastomers are far less brittle and they offer unparalleled control over material architecture," Sliozberg said. "Carbon nanotube/polymer composites have desirable electrical and thermal characteristics that exhibits behaviors superior to conventional fiber materials."

Sliozberg said they need to have deeper understanding of the nature of molecular level interactions in these materials in order to enhance the maximum stress levels it can withstand and tailor energy dissipation mechanisms.

Chemical modification of nanofillers is nontrivial and typically diminish their properties by changing their structure and chemistry. For example, the Young modulus could be lower, she explained.

This team's results strongly indicate the effectiveness of incorporation of aligned carbon nanotubes for microstructure optimization of hierarchical PUU polymers in the matrix as well as at the interface without any filler surface modification, Sliozberg said.

"It shows that the presence of high affinity of poly(urethane-urea) to carbon nanotubes would lead to a novel green synthesis pathway without the need of any surface functionalization of nanotubes for fabrication of carbon nanotube reinforced poly(urethane-urea) nanocomposites hierarchical composites," she said.

Sliozberg's co-authors for the paper, "Dissipative particle dynamics simulation of microphase separation in polyurethane urea nanocomposites" are Jeffrey L. Gair Jr., Scinetics, Inc., and Dr. Alex J. Hsieh, from the lab's Institute for Soldier Nanotechnologies at the Massachusetts Institute of Technology.

Future Army vehicles could see an improvement in their structural materials since they are less susceptible to corrosion, lightweight and have higher electrical conductivity than traditional elastomers. The materials also show great potential to protect vehicles against static build-up and discharge and lightning strikes.

"Certain military vehicles such as Army helicopters must withstand intense vibration and fatigue and the conductive nature of these materials could lead to an unprecedented level of multifunctionality with potential in real-time structural health monitoring through embedded strain sensing and damage monitoring that will lead to safely and accurately assessing the remaining life in vehicle components," Sliozberg said.

Collaborators at Drexel University are furthering the research by investigating the potential uses of PUU polymers with carbon nanotubes as filament materials for 3-D printing. The laboratory is not currently conducting these studies on any vehicles. Researchers plan to collaborate with other Army teams for testing in the near future.

CCDC Army Research Laboratory is an element of the U.S. Army Combat Capabilities Development Command. As the Army's corporate research laboratory, ARL discovers, innovates and transitions science and technology to ensure dominant strategic land power.

Research paper


Related Links
US Army Research Laboratory
The latest in Military Technology for the 21st century at SpaceWar.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MILTECH
Amid COVID-19 hurdles, AFRL develops "jump kits" to rapidly enable operations
Rome NY (SPX) Apr 13, 2020
With vast numbers of businesses and organizations re-calibrating day-to-day operations, organizations across the Department of Defense and the intelligence community are adopting new technologies rapidly developed by the Air Force Research Laboratory to support critical operations amid the worldwide COVID-19 pandemic. The SecureView Program Office based out of AFRL's Information Directorate is working directly with other government programs to provide remote operators with secure access to classif ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MILTECH
Russia positions S-500 as game changer for missile defense

Iran warns US after Patriot deployment to Iraq

US deploys Patriot air defence system to Iraq

Lockheed awarded $932.8M to make THAADs for U.S., Saudi Arabia

MILTECH
Northrop Grumman's Advanced Anti-Radiation Guided Missile continues to protect the US Navy

Lockheed nabs $147.6M for MK41 components

US Norway to partner on hypersonic missile propulsion systems

Air Force selects Raytheon for Long-Range Standoff missile development

MILTECH
American Manufacturers Swift Tactical Systems and Silvus Technologies Announce Strategic Alliance

Steering drones for power generation

Citadel Defense Launches New AI and Machine Learning Software to Detect and Defeat Air, Land, and Sea Drones

Observing the atmosphere at high altitudes using unmanned aerial vehicles

MILTECH
US Space Force pens $1B in contracts for unjammable modems

AEHF-6 Satellite Actively Communicating With U.S. Space Force

AEHF-6 satellite completes protected satellite constellation

Sixth Advanced Extremely High Frequency satellite ready for launch

MILTECH
Future Army vehicles could see an improvement in structural materials

New stop-movement order will allow some soldiers to change station

Amid COVID-19 hurdles, AFRL develops "jump kits" to rapidly enable operations

Underminer demos feasibility of rapidly constructed logistics tunnels

MILTECH
DoD expects three-month delays in military equipment deliveries

NATO needs to protect strategic industries: Stoltenberg

Coronavirus challenges US military machine

DoD urges defense contractors, subcontractors to stay at work

MILTECH
Trump warns China could face 'consequences' over pandemic

Beijing names islands in disputed South China Sea

Russia intercepts another U.S. Navy plane over Mediterranean Sea

As US pulls back, China builds influence at UN

MILTECH
Magnetic nanoparticles help researchers remotely release adrenal hormones

New DNA origami motor breaks speed record for nano machines

Deep-sea osmolyte makes biomolecular machines heat-tolerant









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.