. Military Space News .
NASA Researchers Evaluate Sensor Technology

NASA's Ikhana, a modified Predator B unmanned aircraft adapted for civilian research, is being used to test advanced, fiber optic-based sensing technology that could aid development of active control of wing shape. (NASA photo/Jim Ross)
by Staff Writers
Edwards AFB CA (AFNS) Jul 17, 2008
NASA researchers are evaluating an advanced, fiber optic-based sensing technology that could aid development of active control of wing shape. Controlling a wing's shape in flight would allow it to take advantage of aerodynamics and improve overall aircraft efficiency.

The Fiber Optic Wing Shape Sensor system measures and displays the shape of the aircraft's wings in flight. The system also has potential for improving aircraft safety when the technology is used to monitor the aircraft structure.

Flight tests on NASA's Ikhana, a modified Predator B unmanned aircraft adapted for civilian research, are under way at NASA's Dryden Flight Research Center here. The effort represents one of the first comprehensive flight validations of fiber optic sensor technology.

"Generations of aircraft and spacecraft could benefit from work with the new sensors if the sensors perform in the sky as they have in the laboratory," said Lance Richards, Dryden's Advanced Structures and Measurement Group lead.

The weight reduction that fiber optic sensors would make possible could reduce operating costs and improve fuel efficiency. The development also opens up new opportunities and applications that would not be achievable with conventional technology. For example, the new sensors could enable adaptive wing-shape control.

"Active wing-shape control represents the gleam in the eye of every aerodynamicist," Mr. Richards said. "If the shape of the wing can be changed in flight, then the efficiency and performance of the aircraft can be improved, from takeoff and landing to cruising and maneuvering."

Six hair-like fibers located on the top surface of Ikhana's wings provide more than 2,000 strain measurements in real time. With a combined weight of less than two pounds, the fibers are so small that they have no significant effects on aerodynamics. The sensors eventually could be embedded within composite wings in future aircraft.

To validate the new sensors' accuracy, the research team is comparing results obtained with the fiber optic wing shape sensors against those of 16 traditional strain gauges co-located on the wing alongside the new sensors.

"The sensors on Ikhana are imperceptibly small because they're located on fibers approximately the diameter of a human hair," Mr. Richards explained. "You can get the information you need from the thousands of sensors on a few fibers without the weight and complexity of conventional sensors. Strain gauges, for example, require three copper lead wires for every sensor."

When using the fiber optic sensors, researchers do not require analytical models for determining strain and other measurements on the aircraft because data derived with the sensors include all of the actual measurements being sought.

Another safety-related benefit of the lightweight fiber optic sensors is that thousands of sensors can be left on the aircraft during its lifetime, gathering data on structural health and performance. By knowing the stress levels at thousands of locations on the aircraft, designers can more optimally design structures and reduce weight while maintaining safety, Mr. Richards said. The net result could be a reduction in fuel costs and an increase in range.

Further, intelligent flight control software technology now being developed can incorporate structural monitoring data from the fiber optic sensors to compensate for stresses on the airframe, helping prevent situations that might otherwise result in a loss of flight control.

By extension, the application of the technology to wind turbines could improve their performance by making their blades more efficient.

"An improvement of only a few percent equals a huge economic benefit," Mr. Richards said. "The sensors could also be used to look at the stress of structures, like bridges and dams, and possibilities extend to potential biomedical uses as well. The applications of this technology are mind-boggling."

NASA's Aeronautics Research Mission Directorate is supporting algorithm and systems development, instrument and ground test validation of the new sensor system.

Community
Email This Article
Comment On This Article

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
NASA aeronautics research
UAV News - Suppliers and Technology



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


PicoSAR Flying On The Camcopter S-100 UAV
Vienna, Austria (SPX) Jul 14, 2008
Schiebel Elektronische Geraete GmbH and SELEX Galileo are delighted to announce the first flight of a PicoSAR radar-equipped CAMCOPTER S-100 UAV. This adds a compact radar capability to the successful CAMCOPTER S-100 UAV, giving it an all weather, long range ground mapping and moving target indication capability.







  • Russia Defense Watch: Flexing arctic power
  • Analysis: East Fleet prepares -- Part 1
  • Russia's Medvedev condemns Western 'paternalism'
  • Russian navy boosts combat presence in Arctic

  • UN chief hails progress on North Korea's nuclear disarmament
  • Khamenei: Iran accepts nuclear talks, has 'red lines'
  • Guards leader says Iran's enemies daren't attack
  • US move on Iran a big shift from 'axis of evil' days, analysts say

  • Iran Says Shahab-3 Missile Has Longer Than Reported Range
  • Despite tests, Iran missile path uncertain: analysts
  • Successful Hungarian Missile Trials With Gripen
  • Real Or Not Iranian Missile Tests Must Stop Demands US

  • BMD Watch: PAC upgrade orders for Raytheon
  • US missile defense test delayed until December
  • Russian opposition to missile defense unjustified: US general
  • What Should Russia Do To Counter US Missile Defense In Europe

  • Air China says it is to buy 45 Boeing aircraft
  • British PM blasts polluting 'ghost' flights
  • Raytheon Leads Team To Evaluate Impact Of New Classes Of Aircraft For NASA
  • Bombardier launches 'green' aircraft programme

  • NASA Researchers Evaluate Sensor Technology
  • PicoSAR Flying On The Camcopter S-100 UAV
  • Second GCS Shelter Delivered To BAE For Herti UAV Programme
  • First Fully Autonomous Flight For AVE Drone

  • US military may seek further troop reductions in Iraq: admiral
  • Bush rejects 'artificial' timetable for Iraq pullout
  • EOD flights Take Out Things That Make You Go Boom
  • White House says US-Iraq talks on troops 'on track'

  • LockMart Breaks Ground On Advanced Radar Test And Measurement Facility
  • Russian Army Officers Visit Mountain Combat Center In India
  • Lockheed Martin Enhances Farnborough-Based Swift Laboratory
  • Raytheon Completes ASTOR Capabilities Testing With UK MoD

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement